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Introduction

 Computing today and the Zettabyte Era
* Today’s sustainability paradox:

Al enables efficiency but consumes unsustainable resources.
 Centralized (cloud) vs. decentralized (edge) Al systems.

* Key question: How can we make Al computing greener across compute
hierarchies?
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The Zettabyte Era... started in 2010!
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Preliminary Framing
Computing sp

Quantum computing is an
emergent field of cutting-edge
computer science harnessing
the unique qualities of quantum
mechanics to soive probiems
beyond the ability of even the
most powerful classical
computers.’

-

Neuromorphic computing, also
known as neuromorphic
engineering, is an approach to
computing that mimics the way
the human brain works. it
entails designing hardware and
software that simulate the
neural and synaptic structures
and functions of the brain to
process information.?

ecific domains

*—— s

Biocomputing uses molecular
biology parts as the hardware
to implement computational
devices. By following pre-
defined ruies, often hard-

coded into biological systems,

these devices are able to
process inputs and return
outputs — thus computing
information.?

In-orbit or space-qualified
computing is a technology that
has been developed to
address the most
computationaily-intensive part
of a space mission. It can be
deployed in flight systems,
whether in space or the
atmosphere, and will advance
all types of future space
missions. 4

High-performance computing
(HPC) is the art and science of
using groups of cutting edge
computer systems to perform
compiex simuiations,
computations, and data
analysis out of reach cutting-
edged commercial compute
systems available.”

Global

Future
Councils



Von Neumann computing and beyond

BIT

Classical npu Output
Computing

“The future of computing will not be based on ever-increasing processing power... it
will rely on understanding and drawing inferences from massive collections of data.”

SPIKES |

Neuromorphic
Computing
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=PrL Digital Era and the
Moore’s law

. >100million /mm?
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« 208B transistors in NVIDIA Blackwell, 576
GPUs, 10 TB/second chip-to-chip link

Pty g Al Chip Market to Grow Ten Times in
expect S . Ten Years
revenue to ; =

quintuple in just five ) chip market revenue
years —reaching : worldwide from 2023 to 2033 (in billion U.S. dollars)
$135.3B by FY28, . s

with a 60% EBIT
margin. 5

Artificial intelligence (A
t

Source: Statista Market Insights
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Energy efficiency and data proliferatioh

Data Centers Internet of Things Nodes =
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Part I: Cloud Computing & Al Data Centers

* Data centers = the Big Brains of Internet

* About energy (in)efficiency

* Power Usage Effectiveness (PUE) and its limits
* Cooling technologies: air, liquid, immersion
 Renewable energy integration challenges



Data Centers

Big Brains of
Internet

= global scale =416

terawatts, or 3% of all
electricity on Earth

= 4% of Swiss electricity
usage, will double in next 5
years

* |reland: 14% of national
usage, up to 27% by 2029

= Very energy inefficient




Data Center Components

1. Servers: The Workhorses of Data Processing

» powerful computers are the heartbeat of the operation, handling applications, computations,
and storage tasks
Processing Power

2. Networking Equipment

* connects servers, devices, and users within and beyond the data center. Routers, switches, and other
devices facilitate the transmission of data, ensuring that information flows seamlessly and securely
between different components. This connectivity is the lifeline that enables real-time processing.

Data Transfer, Communication and Security.

3. Storage Systems

* serve as the repositories for the immense volumes of data generated and processed daily.
These include hard disk drives (HDDs), solid-state drives (SSDs), and other storage solutions.

Storage systems provide the necessary space for

Data Retention, Redundancy, Backup and Data Accessibility.
16



Energy efficiency challenge in the cloud

Data centers: .
The average data center uses the same amount of electricity
needed to power a small city.

Energy expenditures are becoming more
significant than the cost of machines.

 Energy efficient strategies for data centers!
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» Advanced CMOS processors in servers: leakage
power dominant over dynamic.
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> 8 millions data centers in 2024.

COOLING
power. Today'"

IBM’s Aquasar data center with innovative water-cooling system:

6 kilowatts of thermal power to heat ETH Zurich. Y
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The MOSFET switch: key benchmarks
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Power density and dark silicon

S5nm 80%
7nm 75%
10nm 56%
14/16nm 45%
20nm 33%
28nm: 0
(reference)

We get more transistors, we just
can’t afford to turn them all!

Greg Yeric, ARM @ IEDM 2015

One or two walls?
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Data Centers for HPC: Strategic Placement for

Sustainability & Performance

* Nordic Regions (Norway, Sweden, Finland,
Iceland, etc.):

@ Naturally cold climate reduces cooling costs significantly.
% Abundant renewable energy (hydro, wind, geothermal).

EU Strong data privacy laws and political stability.

* Underwater Data Centers (e.g., Microsoft's
Project Natick):

@ Seawater cooling provides efficient thermal

o
< "

D

Government incentives for green infrastructure projects.

management.

© Reduced real estate usage and land footprint.
@ Fully automated systems reduce need for on-site staff.

@ Physically secure and isolated from terrestrial threats.

Comparing Nordic and
Underwater Data Centers

for HPC

NORDICS
* Cold climate
Renewable
/F energy

H Cost savings
30-50%

Compliance
& regulatory

PUE

UNDERWATER
DCs

Natural
seawater cooling

Automation

(P compact size

High deployment
cost

"

TRADITIONAL NORDIC UNDERWATER

DC
1.6

DC DC
12 1.1
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Metrics for Data Center Efficiency

The main indicator used to assess overall data center
energy efficiency is PUE (=Power Usage Efficiency), which
shows the ratio between total facility power use and IT
equipment power use (Avelar et al., 2012):

The optimal value for PUE is 1.0, the max value is infinity.

Metric

. L. Metric Formulation
Description

Power Usage
Efficiency

_ Total facility power

Total IT power

Data Center

Total IT power
Infrastructure P

DCIE =

Efficiency Total facility power
Carbon Usage _ Total CO2 emissions from DC energy
Effectiveness B Total IT Equipment ener gy
IT Equipment ITEU = Total measured energy of IT
Utilization " Total specification energy of IT
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Cooling technologies for Data Centers

Air Cooling

* Uses fans and airflow to dissipate heat.
* Most common and cost-effective method.
* Limited efficiency in high-density HPC setups.

Evaporative Cooling

. Cools air through water evaporation.
. More energy-efficient than traditional air cooling.
. Requires consistent water supply and humidity control.

Liquid Cooling

. Circulates coolants (e.g., water, glycol) through pipes near heat sources.

. Higher thermal efficiency than air cooling.
. Suitable for high-performance or densely packed servers.

Immersion Cooling

. Servers are submerged in thermally conductive dielectric fluid.
. Enables extreme heat removal and compact design.

. Reduces energy usage for cooling dramatically.

. Ideal for edge computing and extreme HPC environments.

Cooling Technologies
for Data Centers

= Eﬂo
_ -
N [ ] e
AIR EVAPORATIVE
LIQUID IMMERSION
IMMERSION
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Renewable energy integration challenges

% Power Supply Intermittency
* Solar and wind are weather-dependent.
* Leads to load balancing issues and reliability risks.

D Energy Storage Limitations

* High-performance batteries are expensive and space-intensive.

* Current storage tech lacks scalability for 24/7 uptime needs.
Grid Infrastructure Constraints

* Legacy grids struggle with bidirectional flow and volatility.

* Transmission bottlenecks in remote renewable-rich regions.
Q@ Smart Energy Management Requirements

* Need for Al-driven load forecasting, demand response.

* Requires real-time integration with cloud, edge systems.
@ Economic Trade-Offs

* Higher CAPEX for renewable installations.

* Unpredictable energy market prices can hurt OPEX.

RENEWABLE ENERGY INTEGRATION \
CHALLENGES FOR DATA CENTERS || 1

POWER SUPPLY ENERGY STORAGE
INTERMITTENCY LIMITATIONS

N

Weather-dependent High cost and
sources cause reliabillty inadequate scalalibility

SMART ENERGY ECONOMIC \
MANAGEMENT (3 TRADE-OFFS
REQUIREMENTS

High CAPEX and H H [l
Need for advanced forecasting unpredictable market

and demand response prices
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Growth of Al model size
and computation demands

Explosion in Al Model Sizes

GPT-2 (2019): 1.5B parameters
GPT-3 (2020): 175B parameters
GPT-4 (2023+): >1T parameters

DALL-E 2, Stable Diffusion, Gemini, Claude — growing multimodal
capabilities

Implication: exponential compute, memory, and storage
requirements

O Rise of Cloud Hyperscalers and Al Workloads

Major players: AWS, Microsoft Azure, Google Cloud Platform (GCP)

Massive investment in GPU/TPU clusters & Al-specific
infrastructure

Al workloads dominate cloud revenue growth (training & inference)

% Energy Demands: Training vs Inference

Training: Massive one-time energy cost (e.g., GPT-3 = 1.3 GWh)

Infelrence: Repeated, scalable cost — dominates at deployment
scale

Urgency to improve energy efficiency of both phases (hardware &
algorithmic optimization)

Explosion in Al Model Sizes

)

i

GPT-2 GPT-3

Energy Demands:
Training vs Inference

&
&

Training
Massive one-time energy cost
(e.g, GPT-3=1,3 GWh)

Inference
Repeated, scalable cost -
dominates at deployment scale



PESEENENTTT T T O
/; Thirsty Al = Artificial Intelligence Is
Boomlng—So Is Its Carbon Footprint

. Usmg GPT- 4 to generate 100 words
& consumes up to 3 bottles of water



Correlation Between Al Introduction
& Global Data Generation (2010-25)

Data generation vs
Al Introduction

Shift from Passive to Purposeful Data
Collection

— Al requires structured, high-quality, and
labeled data, so data generation has become
more strategic and goal-driven.

3 | Chart: 2024 Al Index report

. 202

Automated Data Labeling & Augmentation
- Al tools (like computer vision) are now
used to annotate and augment datasets,
speeding up and scaling the generation
process.
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Synthetic Data Creation
—> Al models can generate synthetic datasets
when real data is limited, especially valuable

in medical or rare-event contexts.
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Energy Footprint of Al Training

12

;+| Training Large Models
 GPT-3 training required: ~3.14 x 1023 FLOPs

« =552 metric tons CO,e (equivalent to 125
round-trip flights between NYC and London)

() Carbon Emissions & Water Usage

 Average model training (1 GPU over 1 week):
~0.5 tons CO,e

. .. * Google's Al subsidiary, DeepMind, applied
e Data center cooling (per training run):

machine learning to enhance the efficiency of

~700,000 liters of water used for cooling per 1 Google's data centers, achieving a 40%
MWh of compute energy (equivalent to 4,600 reduction in energy use for cooling.
bathtubs) * This advance translates to a 15% reduction in

overall Power Usage Effectiveness (PUE)

overhead
27



Thirsty Al data Centers

Al data centre’s operational water usage:

on-site scope-1 water for server cooling (via cooling towers in the example)
off-site scope-2 water usage for electricity generation.

Scope-1 Water

_______

,C oz , Global Al's Scope 1 & 2 Water Withdrawal in 2027
oolmg : c}n;.uer I
. T b€t pum T .
Scope-2 Water : “’@ {pcnangeg PP Est. 4.2~6.6 Billion Cubic Meters
1 Cooling | i a
I Tower | =..‘
l _______ - '""'"'Warm Chilled ‘. ‘- ‘.
Water Water
st

PRI Al Al 4

adyl Y1 Y1
wwwy

4~6x Annual Water Withdrawal of Denmark

ChatGPT || AlphaGO

@

Server Rack

Data Center

https://oecd.ai/en/wonk/how-much-water-does-ai-consume
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Research & Innovation for

& Efficient Al Models

* Model distillation: Compress large models into smaller ones with minimal accuracy
loss.

* Quantization & pruning: Reduce precision and unnecessary weights to lower compute
and memory use.

B Green Software Engineering

* Energy-aware coding, efficient algorithms, and adaptive compute scheduling.

* Promote carbon-aware deployments & open-source energy profiling tools.

@ Future Outlook

* Neuromorphic computing: Brain-inspired chips (e.g., spiking neural nets) offering
ultra-low power Al.

* Photonic computing: Light-based computation for faster, energy-efficient data
processing. 2



Part II: Edge Al, 10T & Data Proliferation

Edge Computing and Al Shift

* Why move Al to the edge?
Latency, privacy, bandwidth, data reduction

* Explosion of loT devices and embedded Al. Examples: smart
homes, health wearables, autonomous vehicles,
environmental monitoring, etc.

1 trillion sensor planet, battery operated,
electronic waste

30
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=PFL 1 Ejture Solution TINY BRAINS @ the Edge

Research sensing + processing + communications

= ++ NEUROMORPHIC PROCESSOR &
o Event 4 Decision
&  Detection Making

Radically new approach by SWIMS©

1000x improvement

JUSAT
Cloud

(o))

o T

g o CI—> Processing ——P Communications
<< =

* End-2-End event-based
« All'analog, no conversion analog-digital-analog
 No data stored & communicated (privacy preserved)



Neuromorphic
Edge = Tiny Brains

* Autonomous systems

* Decision making on the Edge
* Real-time, energy efficiency
e Adaptable, bio-inspired

e Spiking Neural Networks:
continuous, time-domain.

1-10pW /node
SPIKES <1p)/spike
Neuromorphic -y
Computing
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Memristive technologies
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Other approaches

Yang, J., Strukov, D. & Stewart, D. Nature Nanotech (2013). Song M.K. et al., ACS Nano 2023



Biological and artificial synapses

* Synapses transfer information between neurons and transform this information.
 Artificial device with programmable conductivity = weight
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Cognitive 3D chips

* Imagine future chips
that can sense, learn,
infer and interact...

“Cognitive systems are probabilistic,
meaning they are designed to adapt and
make sense of the complexity and
unpredictability of unstructured
information,” John E. Kelly, senior vice
president IBM Research




Smart Data Management of Edge to Cloud Al

& Cost of Data Transmission

 High bandwidth use = increased operational cost & energy demand

e Data transmission can account for 30-50% of total system energy in edge-heavy deployments
e  Costs scale non-linearly with latency sensitivity and geographical spread

G| Edge-Cloud Coordination: When to Offload?

* Trade-off between latency, accuracy, and energy usage

e  Offload only when:

> Local compute is overloaded
> Cloud provides significant performance boost
> Network is stable and low-latency

* Use dynamic decision models for offload policies (e.g., reinforcement learning)

Data Summarization & Compression at Source
Apply feature extraction, compression (e.g., entropy coding, quantization) before transmission
Reduces transmission volume by 10x—100x in many loT/Al scenarios
Enhances privacy and energy efficiency

37



Energy Efficiency Techniques for Edge Al

C& TinyML & Model Optimization

* TinyML: Running ML models on ultra-low-power microcontrollers
(LW—mW)

* Model compression: reducing model techniques

* Hardware-aware training: Co-designing models for specific
hardware constraints

@ Event-Driven Sensing

* Uses neuromorphic sensors (e.g. multi-modal sensors) to capture
data only when meaningful events occur

* Significantly reduces energy and bandwidth
On-Device Learning

* Federated learning: Trains models locally and shares only
updates—no raw data transmission

* Continual learning: Enables devices to adapt over time without
full retraining

* Reduces cloud dependence and ensures data privacy

ENERGY-EFFICIENT TECHNIQUES
FOR EDGE Al

e

TinyML & Event-Driven On-Device
Model Sensing Learning
Optimization
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Electronic waste for loT & Edge Al

A Challenges

Massive device deployment: Billions of sensors, wearables, and edge devices.
* Short product life cycles: Rapid obsolescence leads to early disposal.

» Difficult recycling: Miniaturized, composite components are hard to disassemble
and recycle.

* Toxic materials: Batteries, PCBs, and rare earth metals pose environmental risks.

* Low recovery rates: Only ~17.4% of global e-waste was formally documented as
collected and recycled (UN, 2020).

. Sustainable Measures Is the fastest

Design for Circularity: Modular, repairable, and upgradeable hardware. growing UENE
stream

)/
’%

. cIi»loqlegradable electronics: Emerging materials for temporary or low-power edge
evices.

* E-waste regulation compliance \
* Al-powered asset tracking: Smarter lifecycle monitoring and recycling.

* Energy harvesting loT: Reduces reliance on disposable batteries.
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Wrap-Up & Key Takeaways

Al sustainability must be viewed systemically/holliustically:
v'from cloud to edge

* Innovations needed:
v" in both hardware and algorithms
v in policies
* Transparency, regulation, and standardization will be crucial

* Research directions:

v'embodied energy of Al
v'end-to-end LCA

40



Add-ons / Class Activities

* Quick debate: "Is training large Al models ethically justifiable?"

* Case analysis #1: "Estimate CO, footprint of a GPT-3 or -4
qguery using online tools and propose counter measures to
reduce it."”

e Case analysis #2: "Compare carbon commitments of cloud
providers"

e Case analysis #3: "Discuss advantages versus challenges when
moving Al to the Edge."

41



