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Introduction

• Computing today and the Zettabyte Era
• Today’s sustainability paradox: 
   AI enables efficiency but consumes unsustainable resources.
• Centralized (cloud) vs. decentralized (edge) AI systems.
• Key question: How can we make AI computing greener across compute 
hierarchies?
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The Zettabyte Era… started in 2010!

• One zettabyte is the equivalent of 36,000,000 years of high‐definition video. 
(Thomas Barnett Jr., Cisco)

 zettabyte = 1021 bytes





Von Neumann computing and beyond 

von Neumann in the 40’s

“The future of computing will not be based on ever‐increasing processing power… it 
will rely on understanding and drawing inferences from massive collections of data.”
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Most abundant artificial object 
fabricated by humans

Orders of magnitude greater than 400 Billions of stars in the 
Milky Way. 

13’000’000’000’000’000’000’000
Thirteen Sextillion Transistors

13 x 1021



Digital Era and the 
Moore’s law

1 NM

>100million /mm2



• 208B transistors in NVIDIA Blackwell, 576 
GPUs, 10 TB/second chip‐to‐chip link



Edge to Cloud 
information 
processing in 
Digital EraAI 

@ the Edge



Energy efficiency and data proliferation

The rise and the fall of the Roman 
Empire

Data Centers
= Big Brains
 global scale = 416 
terawatts, or 3% of all 
electricity on Earth
 Energy inefficient

Internet of Things Nodes = 
Tiny Brains

+ 1 trillion IoT devices by 2035
with annual growth >20% (ARM)



Part I: Cloud Computing & AI Data Centers

• Data centers = the Big Brains of Internet
• About energy (in)efficiency
• Power Usage Effectiveness (PUE) and its limits
• Cooling technologies: air, liquid, immersion
• Renewable energy integration challenges
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Data Centers

Big Brains of 
Internet
 global scale = 416 
terawatts, or 3% of all 
electricity on Earth

 4% of Swiss electricity 
usage, will double in next 5 
years

 Ireland: 14% of national 
usage, up to 27% by 2029

 Very energy inefficient
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Data Center Components

1. Servers: The Workhorses of Data Processing
• powerful computers are the heartbeat of the operation, handling applications, computations, 
and storage tasks
Processing Power

2. Networking Equipment
• connects servers, devices, and users within and beyond the data center. Routers, switches, and other 
devices facilitate the transmission of data, ensuring that information flows seamlessly and securely 
between different components. This connectivity is the lifeline that enables real‐time processing.
Data Transfer, Communication and Security.

3. Storage Systems
• serve as the repositories for the immense volumes of data generated and processed daily. 
These include hard disk drives (HDDs), solid‐state drives (SSDs), and other storage solutions. 
Storage systems provide the necessary space for 
Data Retention, Redundancy, Backup and Data Accessibility.
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• Energy expenditures are becoming more 
significant than the cost of machines.

• Energy efficient strategies for data centers!

Data centers:
The average data center uses the same amount of electricity 
needed to power a small city. 

ddoffddD VIfCVLP  2

50MWatts 50’000
households

> 8 millions data centers in 2024.

IBM’s Aquasar data center with innovative water-cooling system: 
6 kilowatts of thermal power to heat ETH Zurich.

 Advanced CMOS processors in servers: leakage 
power dominant over dynamic.

Energy efficiency challenge in the cloud



The MOSFET switch: key benchmarks

18
Ionescu & Riel, Nature, 2011.
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One or two walls?

Power Wall

Number of cores

Po
w
er

Parallelism
W
all?

We get more transistors, we just
can’t afford to turn them all!
Greg Yeric, ARM @ IEDM 2015 

Power density and dark silicon



Data Centers for HPC: Strategic Placement for 
Sustainability & Performance

• Nordic Regions (Norway, Sweden, Finland, 
Iceland, etc.):
•         🌡 Naturally cold climate reduces cooling costs significantly.

•         ⚡ Abundant renewable energy (hydro, wind, geothermal).

•         🇪🇺 Strong data privacy laws and political stability.

•         🏗 Government incentives for green infrastructure projects.

• Underwater Data Centers (e.g., Microsoft's 
Project Natick):
•         🌊 Seawater cooling provides efficient thermal 

management.

•         🚫 Reduced real estate usage and land footprint.

•         🤖 Fully automated systems reduce need for on‐site staff.

•         🔒 Physically secure and isolated from terrestrial threats.
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Metrics for Data Center Efficiency

• The main indicator used to assess overall data center 
energy efficiency is PUE (=Power Usage Efficiency), which 
shows the ratio between total facility power use and IT 
equipment power use (Avelar et al., 2012):

• The optimal value for PUE is 1.0, the max value is infinity.
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Cooling technologies for Data Centers

Air Cooling
• Uses fans and airflow to dissipate heat.
• Most common and cost‐effective method.
•  Limited efficiency in high‐density HPC setups.
Evaporative Cooling
•     Cools air through water evaporation.
•     More energy‐efficient than traditional air cooling.
•     Requires consistent water supply and humidity control.
Liquid Cooling
•     Circulates coolants (e.g., water, glycol) through pipes near heat sources.
•     Higher thermal efficiency than air cooling.
•     Suitable for high‐performance or densely packed servers.
Immersion Cooling
•     Servers are submerged in thermally conductive dielectric fluid.
•     Enables extreme heat removal and compact design.
•     Reduces energy usage for cooling dramatically.
•     Ideal for edge computing and extreme HPC environments.
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Renewable energy integration challenges

⚡ Power Supply Intermittency
• Solar and wind are weather‐dependent.
• Leads to load balancing issues and reliability risks.

🔋 Energy Storage Limitations
• High‐performance batteries are expensive and space‐intensive.
• Current storage tech lacks scalability for 24/7 uptime needs.

🔄 Grid Infrastructure Constraints
• Legacy grids struggle with bidirectional flow and volatility.
• Transmission bottlenecks in remote renewable‐rich regions.

🧠 Smart Energy Management Requirements
• Need for AI‐driven load forecasting, demand response.
• Requires real‐time integration with cloud, edge systems.

💰 Economic Trade‐Offs
• Higher CAPEX for renewable installations.
• Unpredictable energy market prices can hurt OPEX. 23



📈 Explosion in AI Model Sizes
• GPT‐2 (2019): 1.5B parameters
• GPT‐3 (2020): 175B parameters
• GPT‐4 (2023+): >1T parameters
• DALL·E 2, Stable Diffusion, Gemini, Claude — growing multimodal 

capabilities
• Implication: exponential compute, memory, and storage 

requirements
☁ Rise of Cloud Hyperscalers and AI Workloads

• Major players: AWS, Microsoft Azure, Google Cloud Platform (GCP)
• Massive investment in GPU/TPU clusters & AI‐specific 

infrastructure
• AI workloads dominate cloud revenue growth (training & inference)

⚡ Energy Demands: Training vs Inference
• Training: Massive one‐time energy cost (e.g., GPT‐3 ≈ 1.3 GWh)
• Inference: Repeated, scalable cost — dominates at deployment 

scale
• Urgency to improve energy efficiency of both phases (hardware & 

algorithmic optimization)
24

Growth of AI model size  
and computation demands



Thirsty AI = Artificial Intelligence Is 
Booming—So Is Its Carbon Footprint

• Using GPT-4 to generate 100 words 
consumes up to 3 bottles of water

25



Data generation vs 
AI Introduction
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Shift from Passive to Purposeful Data 
Collection
→ AI requires structured, high‐quality, and 
labeled data, so data generation has become 
more strategic and goal‐driven.

Automated Data Labeling & Augmentation
→ AI tools (like computer vision) are now 
used to annotate and augment datasets, 
speeding up and scaling the generation 
process.

Synthetic Data Creation
→ AI models can generate synthetic datasets 
when real data is limited, especially valuable 
in medical or rare‐event contexts.



Energy Footprint of AI Training

🔢 Training Large Models
• GPT‐3 training required: ~3.14 × 10²³ FLOPs
• ≈ 552 metric tons CO₂e (equivalent to 125 
round‐trip flights between NYC and London)

💧 Carbon Emissions & Water Usage
• Average model training (1 GPU over 1 week): 
~0.5 tons CO₂e

• Data center cooling (per training run):  
~700,000 liters of water used for cooling per 1 
MWh of compute energy (equivalent to 4,600 
bathtubs)
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• Google's AI subsidiary, DeepMind, applied 
machine learning to enhance the efficiency of 
Google's data centers, achieving a 40% 
reduction in energy use for cooling. 

• This advance translates to a 15% reduction in 
overall Power Usage Effectiveness (PUE) 
overhead



Thirsty AI data Centers
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AI data centre’s operational water usage: 
• on‐site scope‐1 water for server cooling (via cooling towers in the example)
• off‐site scope‐2 water usage for electricity generation. 

https://oecd.ai/en/wonk/how‐much‐water‐does‐ai‐consume 



Research & Innovation for a Greener AI Cloud
🧠 Efficient AI Models
• Model distillation: Compress large models into smaller ones with minimal accuracy 
loss.

• Quantization & pruning: Reduce precision and unnecessary weights to lower compute 
and memory use.

💻 Green Software Engineering
• Energy‐aware coding, efficient algorithms, and adaptive compute scheduling.
• Promote carbon‐aware deployments & open‐source energy profiling tools.
🔮 Future Outlook
• Neuromorphic computing: Brain‐inspired chips (e.g., spiking neural nets) offering
ultra‐low power AI.

• Photonic computing: Light‐based computation for faster, energy‐efficient data 
processing. 29



Part II: Edge AI, IoT & Data Proliferation

Edge Computing and AI Shift 
• Why move AI to the edge? 

Latency, privacy, bandwidth, data reduction
• Explosion of IoT devices and embedded AI. Examples: smart 
homes, health wearables, autonomous vehicles, 
environmental monitoring, etc.
1 trillion sensor planet, battery operated, 
electronic waste

30



CMOS dark silicon

A smartphone chip prototype at the University of California, 
San Diego to improve smartphone efficiency by making use of 
"dark silicon“. 

How Much of Our Brain Do We Use?
The 10% myth.



Future Solution TINY BRAINS @ the Edge

Processing Communications

• End-2-End event-based 
• All analog, no conversion analog-digital-analog
• No data stored  & communicated (privacy preserved)

1000x improvement 
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Radically new approach by SWIMS©



Neuromorphic 
Edge = Tiny Brains

• Autonomous systems
• Decision making on the Edge
• Real‐time, energy efficiency
• Adaptable, bio‐inspired
• Spiking Neural Networks: 
continuous, time‐domain.

Hardware :
artificial synapses and neurons

Event‐driven SWIMS ©



Memristive technologies 
for the Edge

Yang, J., Strukov, D. & Stewart, D. Nature Nanotech (2013). 

• can retain a state of internal 
resistance based on the history of 
applied voltage and current 

Song M.K. et al., ACS Nano 2023



Biological and artificial synapses
• Synapses transfer information between neurons and transform this information. 
• Artificial device with programmable conductivity = weight

S. Kamaei, PhD thesis, EPFL, 2023.
35



“Cognitive systems are probabilistic, 
meaning they are designed to adapt and 
make sense of the complexity and 
unpredictability of unstructured 
information,” John E. Kelly, senior vice 
president IBM Research

Cognitive 3D chips

• Imagine future chips 
that can sense, learn, 
infer and interact…



Smart Data Management of Edge to Cloud AI
💸 Cost of Data Transmission
•     High bandwidth use = increased operational cost & energy demand
•     Data transmission can account for 30–50% of total system energy in edge‐heavy deployments
•     Costs scale non‐linearly with latency sensitivity and geographical spread
🔄 Edge‐Cloud Coordination: When to Offload?
•     Trade‐off between latency, accuracy, and energy usage
•     Offload only when:

         Local compute is overloaded
         Cloud provides significant performance boost
         Network is stable and low‐latency

•     Use dynamic decision models for offload policies (e.g., reinforcement learning)
 Data Summarization & Compression at Source
•     Apply feature extraction, compression (e.g., entropy coding, quantization) before transmission
•     Reduces transmission volume by 10×–100× in many IoT/AI scenarios
•     Enhances privacy and energy efficiency

37



Energy Efficiency Techniques for Edge AI
🔍 TinyML & Model Optimization
• TinyML: Running ML models on ultra‐low‐power microcontrollers 
(μW–mW)

• Model compression: reducing model techniques
• Hardware‐aware training: Co‐designing models for specific 
hardware constraints

🎯 Event‐Driven Sensing
• Uses neuromorphic sensors (e.g. multi‐modal sensors) to capture 
data only when meaningful events occur

• Significantly reduces energy and bandwidth
📱 On‐Device Learning
• Federated learning: Trains models locally and shares only 
updates—no raw data transmission

• Continual learning: Enables devices to adapt over time without 
full retraining

• Reduces cloud dependence and ensures data privacy
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Electronic waste for IoT & Edge AI

⚠ Challenges
• Massive device deployment: Billions of sensors, wearables, and edge devices.
• Short product life cycles: Rapid obsolescence leads to early disposal.
• Difficult recycling: Miniaturized, composite components are hard to disassemble 

and recycle.
• Toxic materials: Batteries, PCBs, and rare earth metals pose environmental risks.
• Low recovery rates: Only ~17.4% of global e‐waste was formally documented as 

collected and recycled (UN, 2020).

✅ Sustainable Measures
• Design for Circularity: Modular, repairable, and upgradeable hardware.
• Biodegradable electronics: Emerging materials for temporary or low‐power edge 

devices.
• E‐waste regulation compliance
• AI‐powered asset tracking: Smarter lifecycle monitoring and recycling.
• Energy harvesting IoT: Reduces reliance on disposable batteries.
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Wrap‐Up & Key Takeaways

• AI sustainability must be viewed systemically/holliustically: 
from cloud to edge

• Innovations needed:
 in both hardware and algorithms
 in policies

• Transparency, regulation, and standardization will be crucial
• Research directions: 
embodied energy of AI
end‐to‐end LCA
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Add‐ons / Class Activities

• Quick debate: "Is training large AI models ethically justifiable?"
• Case analysis #1: "Estimate CO₂ footprint of a GPT‐3 or ‐4 
query using online tools and propose counter measures to 
reduce it."
• Case analysis #2: "Compare carbon commitments of cloud 
providers"
• Case analysis #3: "Discuss advantages versus challenges when
moving AI to the Edge."
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